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SUMMARY

The discovery of long non-coding RNA (IncRNA) has dramatically altered our understanding of
cancer. Here, we describe a comprehensive analysis of INCcRNA alterations at transcriptional,
genomic, and epigenetic levels in 5,037 human tumor specimens across 13 cancer types from the
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Cancer Genome Atlas (TCGA). Our results suggest that the expression and dysregulation of

IncRNAs are highly cancer-type specific compared to protein-coding genes. Using the integrative
data generated by this analysis, we present a clinically guided small interfering RNA screening

strategy and a co-expression analysis approach to identify cancer driver IncRNAs and predict their
functions. This provides a resource for investigating INcRNAs in cancer and lays the groundwork
for the development of new diagnostics and treatments.
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INTRODUCTION

Cancer is a genetic disease involving multi-step changes in the genome. The human genome
contains ~20,000 protein-coding genes (PCGs), representing less than 2% of the total
genome (Ezkurdia et al., 2014), whereas up to 70% of the human genome is transcribed into
RNA, yielding many thousands of non-coding RNAs (Derrien et al., 2012; Mattick and
Rinn, 2015). Long non-coding RNAs (IncRNAS) are operationally defined as transcripts that
are larger than 200 nt that do not appear to have protein-coding potential (Kapranov et al.,
2007; Mattick and Rinn, 2015). Similar to protein-coding transcripts, transcriptional control
of IncRNAs is subject to typical histone modification-mediated regulation, and IncRNA
transcripts are processed by the canonical spliceosome machinery (Cabili et al., 2011;
Derrien et al., 2012; Guttman et al., 2009; Ravasi et al., 2006). Compared to their protein-
coding counterparts, InNcRNA genes are composed of fewer exons, are under weaker
selective constraints during evolution, and are present in relatively lower abundance.
Notably, the expression of INcRNAs is strikingly cell type- and tissue-specific (Cabili et al.,
2011; Mercer et al., 2008; Ravasi et al., 2006), and in many cases, even primate-specific
(Derrien et al., 2012). LncRNAs can serve as scaffolds or guides to regulate protein-protein
or protein-DNA interactions; as decoys to bind proteins or miRNAs; and as enhancers to
influence gene transcription, when transcribed from enhancer regions or their neighboring
loci (Batista and Chang, 2013; Guttman and Rinn, 2012; Karreth and Pandolfi, 2013; Lee,
2012; Mattick and Rinn, 2015; Mercer et al., 2009; Morris and Mattick, 2014; Orom and
Shiekhattar, 2013; Prensner and Chinnaiyan, 2011; Ulitsky and Bartel, 2013). Importantly,
rapidly accumulating evidence indicates that IncRNAs are associated with chromatin-
modifying complexes and guide epigenetic regulations in both physiological and
pathological conditions (Mercer and Mattick, 2013).
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Recent studies suggested that InNcRNA is involved in the initiation and progression of cancer.
In addition to the fact that they are highly deregulated in tumors (Akrami et al., 2013; Calin
etal., 2007; Du et al., 2013; lyer et al., 2015; Kim et al., 2014; Li et al., 2015; Ling et al.,
2013; Prensner et al., 2011; Trimarchi et al., 2014; Xing et al., 2014), IncRNAs have been
found to act as tumor suppressors or oncogenes. Therefore, a comprehensive genomic
characterization of INcRNA alterations across major cancers is not only urgently needed but
may lead to new diagnostic and therapeutic strategies for cancer. The TCGA project is a
coordinated effort to accelerate our understanding of the molecular basis of cancer through
the application of genomic analysis technologies. Here, we performed a multiplatform
integrative analysis of IncRNA alterations in 5,037 of cancers from 13 tumor types in TCGA
project.

The expression of IncRNAs is dysregulated in cancer

We analyzed RNA sequencing profiles (RNA-seq) from 5,037 tumors across 13 cancer
types as well as 424 normal specimens from nine matching tissue types in TCGA (Table
S1). An evidence-based INcCRNA transcript annotation that contains 13,562 manually
annotated IncRNA genes from the GENCODE consortium (V18) was used to define
IncRNAs. To evaluate the analysis reliability of the workflow for RNA-seq data in the
present study, we compared 520 breast specimens whose RNA expression had been
analyzed by both RNA-seq and microarray in TCGA. The transcriptomic correlations of
RNA expression determined by RNA-seq (RPKM) and by microarray were calculated in a
total of 13,318 PCGs and IncRNAs. In more than 96.7% of genes analyzed, significant and
positive correlations were observed between the RPKM- and microarray-derived RNA
expression levels (Figure S1A and B). To ensure detection reliability and reduce background
noise, we applied two filters in each cancer type: the first eliminates any gene whose 50t
percentile RPKM value is equal to 0; the second filter selects only genes whose 90t
percentile RPKM value is greater than 0.1. On average, 4,409 IncRNAs (32.51% of
IncRNAs annotated by GENCODE) were detected in each cancer type. Of these, 2,316
(17.08%) IncRNAs were commonly detected in all 13 cancer types and 8,179 (60.31%)
IncRNAs were detected in at least one cancer type (Table S2 and Figure S1C). The IncRNAs
detected in each cancer type are listed in Table S2.

To characterize tumor-associated dysregulation of INcRNA expression, we analyzed
IncRNA expression in seven cancer types for which the number of corresponding normal
tissue samples analyzed by RNA-seq was greater than 20 (Figure 1A). Compared to their
normal counterparts, the seven cancer types had on average 15.00% and 11.18% of
IncRNAs significantly up- and down-regulated, respectively (Figure 1B). The IncRNAs
whose RNA expression was significantly altered in each cancer type are listed in Table S2.
Using the same pipeline, we also calculated the percentages of dysregulated PCGs and
found that IncRNAs and PCGs have similar percentages of tumor-associated dysregulation
of expression (Figure 1B). By comparing the dysregulated IncRNAs in different cancer
types, we found that ~60% of these altered IncRNAs were cancer-type specific, and the rest
were shared by at least two cancer types (Figure 1C and D; Figure S1D). We identified only

Cancer Cell Author manuscript; available in PMC 2016 October 12.



1duasnuen Joyiny 1duosnuen Joyiny 1duosnuen Joyiny

1duosnuen Joyiny

Yan et al.

Page 4

five InNcCRNAs whose RNA expression was significantly altered in all seven cancer types
(Figure 1E). The expression of many previously identified tumor-associated INCRNAs was
found to be significantly dysregulated in multiple cancer types. For example, the oncogenic
IncRNAs PCAT7 PVT], and HOTAIRwere significantly upregulated in six, five, and four
cancer types, respectively. The IncRNAs whose dysregulated expression was shared or
unigue among different cancer types are listed in Table S2. Importantly, the percentage of
cancer type-unique dysregulated INcRNAs was remarkably higher than that of PCGs (Figure
1C to F), although IncRNAs and PCGs have similar percentages of global dysregulation.
Together, this demonstrates that the dysregulation of expression of INCRNA is common in
cancer. While most IncRNAs showing dysregulated expression are cancer type-unique, a
small number of alterations are shared among different cancer types.

Somatic copy numbers of INCRNA genes are altered in cancer with different frequencies

We analyzed the somatic copy number alterations (SCNAS) of IncRNAs in cancer via SNP
microarray analysis of 5,860 tumors in 13 cancer types from TCGA. For each cancer type,
the SCNA frequencies of the IncRNA-containing loci were calculated (Figure 2A and B).
When “high-frequency alteration” is defined as an alteration that occurs in more than 25%
of the specimens in a given cancer type, few IncRNA gene loci had concurrent high-
frequency gain and loss in the same type of cancer (Figure S2A). Across all 13 cancer types,
there were on average 13.16% and 13.53% of IncRNA genes with high-frequency gain or
loss, respectively (Figure 2A to C, Table S3). While OV and LUSC had the most INcRNAs
with high-frequency SCNAs, very few IncRNAs in PRAD and LAML had high-frequency
alterations (Figure 2A and C).

To characterize the focal SCNASs that harbor INCRNA genes, we retrieved the location
information of focal genomic alteration peaks from the Firehose project and mapped the
IncRNA-containing loci to these focal alteration regions in each cancer type (Figure S2B
and Table S3). In squamous cell lung carcinoma, for example, a total of 435 and 1,811
IncRNA genes were mapped to regions with focal gains and losses, respectively (Figure
2D). The IncRNA genes located in the focal alteration regions in other cancer types are
shown in Figure S2B. Many previously identified tumor-associated IncRNAs were found to
be associated with focal SCNAs in multiple cancer types. For example, the oncogenic
IncRNAs FAL1(FALEC)and PVT1were focally amplified in seven and six cancer types,
respectively.

To estimate the contribution of SCNAs to INcCRNA dysregulation in cancer, we analyzed the
correlation between IncRNA copy number and RNA expression level for all detectable
IncRNAs in each cancer type. In summary, for 36.27% of the IncRNAs there was a positive
correlation (R=0.2) between their RNA expression level and their gene copy number (Figure
2E). Importantly, cancer types that had higher levels of SCNAs (such as OV and LUSC),
demonstrated stronger RNA-SCNA correlations than the cancer types with fewer SCNAS
(such as LAML and PRAD) (Figure 2F). This suggests that SCNAs are an important
mechanism that leads to the dysregulation of IncRNAs in cancer, especially for those cancer
types whose genomes contain abundant SCNAs.
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DNA methylation patterns in the promoter regions of INCRNA genes are altered in cancer

We analyzed DNA methylation alterations in the promoter regions of INCRNAS in cancers.
DNA methylation microarray profiles on 2,791 tumor and 467 normal specimens across
seven cancer types were obtained from TCGA. A total of 35,696 probes corresponding to
the promoter regions of the 2,435 IncRNA genes whose expression was analyzed by RNA-
seq were identified (Table S4). On average, the promoter region of each INcRNA gene was
covered by 15 probes. We first used consensus non-negative matrix factorization (NMF)
clustering analysis to cluster samples according to their methylation profiles in each cancer
type. This revealed that, for all seven cancer types studied, the DNA methylation profiles of
IncRNA genes from normal samples were very similar within the cancer type, while the
DNA methylation patterns of INCRNA genes from tumor samples were quite diverse (Figure
3A and Figure S3). It suggests that the promoter regions of IncRNAs are subjected to DNA
methylation-mediated epigenetic alterations during tumorigenesis. Next, we applied four
separate filtering criteria to screen for cancer-associated epigenetically silenced InNCcRNA
genes (CAESLG) (Figure 3B and C). On average, 3.92% of IncRNA genes had both
hypermethylated promoters and reduced RNA expression in tumors compared to their
normal counterparts (Figure 3D). The CAESLG candidates of each cancer type are listed in
Table S4. These findings suggest that epigenetic silencing of IncRNA genes may be a
mechanism that contributes to the dysregulation of expression of IncRNAs in cancer. Due to
the probes for many INcRNA genes were not available in the DNA methylation microarray
platform, some IncRNAs that are epigentically regulated may not be identified in our
analysis.

Many cancer-associated SNPs are located in INCRNA loci

Using 5Kb as the cut-off distance between an annotated transcript and a cancer-associated
SNP, we re-mapped all cancer-associated SNPs reported by the NHGRI Catalog of
Published GWAS studies (Table S5) to genes annotated by ENCODE. We found that
11.75% of the index-SNPs were near loci harboring INCRNA genes (Table S5). The
percentages of index-SNPs close to PCGs, pseudogenes, and other genes were 54.75%,
3.75%, and 3.38%, respectively (Figure 4A). We further reasoned that only genes expressed
in tumor tissues have the potential to be functionally involved in cancer development. By
analyzing RNA-seq profiles from TCGA in the nine cancer types for which both GWAS
SNP and TCGA RNA-seq information were available and combining the expression
analysis with the above findings regarding SNP-associated INCRNA, we identified InCRNAs
that are both close to index SNPs and that express detectable transcripts in tumors (Table
S5). In PRAD, for example, 24 IncRNAs were found to reside near 28 index-SNPs. Among
these 24 IncRNAs, six were detected in prostate tumors (Figure 4B).

The expression of IncRNAs is a specific biomarker in cancer

To evaluate the potential value of IncRNAs as biomarkers in cancer, we first asked whether
the expression signature of IncRNAs can differentiate between tumors and their
corresponding normal tissues. In all nine tumor types where both tumor and normal tissues
were available, we were able to use unsupervised cluster analysis to differentiate normal
tissues from tumors. While the expression of IncRNAs in tumor demonstrated diverse
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patterns, the expression in normal tissue was relatively homogenous and could be clearly
separated from the expression patterns in tumor tissues (Figures 5A and B and Figure S4A).
To further examine the value of INCRNAs as biomarkers, we chose to study breast cancer,
since it is a heterogeneous cancer type with well-characterized pathological and molecular
subtypes. We selected 817 breast tumors for which the molecular subtype had been defined
by the UCSC Cancer Genome Browser. A cluster analysis showed that the unsupervised
IncRNA expression subtypes demonstrated a high correlation with the defined PAM50
subtypes, and also had a high correlation with clinical subtypes (Figure 5C). In particular,
almost all of the basal-like/triple negative breast tumors were clustered together and clearly
separated from other tumor and normal tissue samples. Importantly, it has been reported that
IncRNA expression is strikingly tissue- and cell-type specific compared with PCGs in
normal tissues (Cabili et al., 2011; Mercer et al., 2008; Ravasi et al., 2006). We decided to
compare the tissue specificity among IncRNAs, PCGs, and pseudogenes in cancer. We used
an entropy-based metric that relies on Jensen-Shannon (JS) divergence to calculate
specificity scores (Cabili et al., 2011) for each gene in breast specimens, and found that the
expression of INCRNA demonstrated the highest subtype specificity, followed by
pseudogenes, while PCGs demonstrated the least subtype specificity (Figure 5D). About
18.27% of IncRNAs showed subtype specificity, while only 10.55% of PCGs were subtype-
specific (Figure 5E). To rule out the possibility that the higher specificity of INCRNAs is a
result of their lower abundance, we calculated the specificity scores of highly expressed
transcripts from these three different types of genes. Again, IncRNA showed a higher tissue
specificity than PCG and pseudogenes (Figure 5D).

We also sought to determine if the expression signatures of INcRNAs are also cancer-type
specific using RNA-seq profiles from the Cancer Cell Line Encyclopedia (CCLE) in 935
human tumor cell lines (Table S6). As shown in Figure 5F, tumors of epithelia, melanoma,
hematological, and neurological origins formed distinctive clusters based on INcRNA
expression. Sarcoma tumors displayed a diffuse INCRNA expression pattern, which may be
explained by the fact that this type of tumor arises from various tissues. Using the JS
divergence calculation, we compared the tissue-specificity of IncRNAs, PCGs, and
pseudogenes. Similar to our findings regarding subtype specificity in TCGA, the JS
divergence measurements across cell lines of different origins revealed that IncRNA are
more tissue-specific than PCGs and pseudogenes (Figure 5G). Finally, we compared cancer-
type specificity across cell lines from 22 cancer types, and consistent results were observed
(Figure S4B). These studies suggest that IncRNAs have the potential to serve as specific
biomarkers with potential applications in cancer prediction, early-detection, and diagnosis.
Notable, unknown primary origin tumors account for 3-5% of all new cancer cases and are
aggressive diseases with poor prognosis. Our data indicate that IncRNAs may serve as
informative biomarkers to determine the origin of these tumors.

IncRNome profiles provide a resource to functionally identify cancer driver IncRNAs

We hypothesized that, using the TCGA IncRNome information as a clinical filter, we were
able to generate a concentrated and clinically relevant IncRNA list that could be used for a
candidate-oriented functional screening. To test the concept, we chose breast cancer as an
example, and evaluated a four-step procedure to identify for potential driver INCRNAs
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(Figure 6A). In summary, we identified 19 IncRNAs that have cancer-associated genomic
alterations and are also correlated with patient survival (Table S7). In a proof-concept
screening, we found that all four siRNAs specifically targeted ENSG0000025373@reast
CancerAssociatedncRNA, BCALS significantly reduced the proliferation of MDA-
MB-231 cells (Figure 6B). BCALSIis the neighbor transcript of OTUD6B(Xu et al., 2011),
and they share overlapping promoter regions. Further analysis of SNP arrays revealed that
the BCAL8gene was amplified in 49.7% of breast cancer (Figure 6C). Importantly, both
higher expression of BCAL8RNA and genomic gain of the BCAL8gene were significantly
associated with decreased survival in breast cancer (Figure 6D). There was also a strong
positive correlation between BCAL8RNA expression and its genomic copy number in the
breast tumors (Figure 6E). With the vast amount of data available in TCGA IncRNome, we
had the resources to expand our characterization of BCAL8from breast cancer to other
cancer types. Interestingly, we found that higher expression of BCAL8RNA was also
significantly correlated with poor clinical outcome in OV, UCEC and LAML (Figure S5A).
While the BCAL8was significantly amplified in OV and UCEC, this was not the case for
LAML (Figure S5B). To further validate the function of BCAL8 we suppressed BCAL8
expression by shRNA in breast and ovarian cancer cell lines. We consistently found that the
expression of BCAL8shRNAs significantly reduced growth rates in all cell lines tested
(Figure 6F). Moreover, down-regulating BCALB8expression also significantly reduced
anchorage-independent growth in cells (Figure 6G and H). Finally, we injected cells
expressing control and BCAL8specific hairpins into nude mice and found that the
expression of the BCAL8shRNAs significantly suppressed tumor growth in vivo (Figure 61).
Together, this describes a strategy to integrate multidimensional molecular profiles with
clinical annotations to generate clinical parameter-specific candidates for genetic screening.

IncRNome profiles provide a resource to infer INcCRNA functions

Predicting the biological functions of IncRNAs is challenging. Guilt-by-Association (GBA)
analysis has been proposed that the function of a poorly characterized IncRNA gene can be
inferred on the basis of known functions of PCGs with which it is co-expressed (Huarte et
al., 2010). Since the TCGA provides multi-omic profiles in large-scale, it may serve as an
excellent resource for GBA-based IncRNA function prediction. To test this concept, we
conducted GBA analysis for BCAL8 The RNA-seq profiles were analyzed to identify PCGs
whose expression was significantly correlated with BCAL8expression in three cancer types
(Figure 7A). We found that 38.2% (958/2,500) of BCAL8associated PCGs were shared by
all three cancer types (Figure 7B). Next, we performed gene ontology (GO) analysis on the
BCAL8associated PCGs that were common across the three cancer types, and found that the
most over-represented pathway in BCAL8associated genes was the cell cycle pathway
(Figure 7C and D). We also performed a GBA analysis for BCAL8using a protein
expression profile (RPPA array) of breast cancer from TCGA, and identified 37 proteins
(antibodies) whose expression levels were significantly and positively correlated with
BCAL8expression (Figure 7E and Table S8). Consistent with the above RNA-based GBA
analyses, many BCAL8associated proteins were key regulators in cell cycle pathways. For
example, we found that BCALB8expression was significantly and positively correlated with
Cyclin E2 at both the mRNA and protein levels. We knocked down BCALB8expression in
cancer cell lines and analyzed cell cycle profiles. Consistent with our GBA prediction,
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knocking down BCAL8dramatically inhibited the G1-S transition of the cell cycle (Figure
7F). Finally, supporting our GBA analysis, suppressing BCAL8expression significantly
reduced both CCNE2 mRNA and Cyclin E2 protein levels (Figure 7G and H). In summary,
using BCAL8as an example, we described an integrated bioinformatic approach to elucidate
the function of given INcRNAs using information from the IncRNome dataset of TCGA
(Figure S6).

DISCUSSION

Before the discovery of non-coding RNAs, the search for cancer drivers was focused on
PCGs that resided in recurrent alterations in cancer genomes. However, many of these
recurrent alterations were found to either be located in “gene desert” regions or they
contained no cancer-linked PCGs. The lack of PCGs in cancer-associated genetic alterations
is further supported by the fact that only 2% of the human genome encodes proteins. These
findings, in combination with the recent revelation that about 70% of the human genome is
transcribed into RNA, strongly suggest that non-coding RNAs play significant roles in
tumor development. Our study represents the one of largest analyses so far of IncRNA
dysregulation at transcriptional, genomic, and epigenetic levels across cancers, substantially
expanding our knowledge of non-coding RNAs in the cancer genome (the data generated
from this study are available at http://tcla.fcgportal.org). Given that the majority of the
human genome is transcribed to RNA while only a small portion of these transcripts encode
proteins, the number of INCRNA genes may be very large. An important challenge is that the
genome-wide annotation and functional characterization of INCRNAs is still in its infancy.
Further efforts will be needed to de novaannotate and characterize cancer unique InNcRNA
transcripts (lyer et al., 2015; Trimarchi et al., 2014).

The expression of INcRNAs is strikingly cell type-specific in normal tissues (Cabili et al.,
2011; Mercer et al., 2008; Ravasi et al., 2006). Our results indicate that the expression of
IncRNA has the highest cancer type-specificity, followed by pseudogenes, and then PCGs,
which were least subtype specific. The expression of InNcRNAs is frequently dysregulated in
cancer. There are sensitive, rapid, low-cost methods readily available for IncRNA
quantification. Additionally, IncRNAs often form secondary structures that are relatively
stable, thereby facilitating their detection as free RNAs in body fluids such as urine and
blood. Therefore, INcCRNAs may be an ideal class of biomarkers with potential applications
in cancer prediction, early-detection, diagnosis and classification.

The TCGA project has profiled large numbers of tumors to identify molecular aberrations at
multi-omic levels. Extracting valid information from TCGA can deepen our understanding
of tumorigenesis and lead to the development of therapeutics. However, because cancer
genomes are highly unstable, many cancer-associated alterations are not the causes but
instead the consequence of tumorigenesis. The main challenge in developing effective
therapies is to identify cancer-driver genes, which once targeted by therapeutic agents can
suppress or eliminate tumor growth. Analyses of genome-wide molecular profiles using
various bioinformatics approaches can reveal genomic alterations during cancer initiation
and progression but cannot distinguish “causal” from “bystander” genetic alterations.
Genome-wide functional screening approaches have been used with some success in
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identifying cancer driver genes; however, this approach can be time and labor intensive, and
more importantly, susceptible to finding false positives and fraught with high numbers of
false negatives. Here, we have developed a clinically guided genetic screening approach to
identify functional IncRNAs in cancer. Using the cancer IncRNome resource generated in
our study as biological/clinical filters, we were able to generate a relatively short list of
IncRNA candidates for more extensive testing using candidate-oriented genetic screening.
Predicting the biological functions of a given IncRNA is challenging. A “co-expression”
approach has been used as one approach to begin to achieve an understanding of IncRNA
function (Huarte et al., 2010). Since the level of IncRNA expression may directly represent
its biological function in cancer, we proposed predicting IncRNA functions by co-expression
analysis, i.e., by identifying the PCGs whose expression are significantly correlated with the
expression of a given InNcRNA. The TCGA project contains multi-omic profiles of large-
scale samples, serving as an excellent resource for co-expression analysis. Taken together,
the IncRNome database generated in the present study provides a resource to effectively
identify cancer driver IncRNAs and predict their functions in cancer, which will lead to a
greater understanding of molecular mechanisms of cancer, and should lead to clinical
applications in oncology.

EXPERIMENTAL PROCEDURES

Annotation of IncRNAs, PCGs, and pseudogenes

The GENCODE IncRNA annotation (\V18), a manually curated and evidence-based IncRNA
annotation containing 13,562 genes and 23,105 transcripts, was used to define IncCRNA
genes. The GENCODE whole annotation (VV18) was used to define PCGs and pseudogenes,
resulting in a PCG set containing 20,318 genes and 81,673 transcripts; a pseudogene set
containing 14,181 genes and 17,517 transcripts; and an “other genes” set containing 9,384
genes and 73,289 transcripts.

RNA-seq data processing

RNA-seq files were downloaded from the Cancer Genomics Hub (http://cghub.ucsc.edu).
We imported the aligned reads of each BAM file to the Partek Genomic Suite (http://
www.partek.com/) to obtain the expression levels for genes by summarizing the reads per kb
per million mapped reads (RPKM) values. For each cancer type, we applied two filters to
eliminate unreliability in the measurements of genes: 1) the 50t percentile of the RPKM
values are larger than 0; and 2) the 90t percentile of the RPKM values are larger than 0.1.
The genes that passed the above two filters were defined as detectable in a given cancer
type. Please see Supplemental Experimental Procedures for a discussion of detailed
procedures.

Xenograft model in vivo

Six to eight week old female nude mice were used for the xenograft assays. A2780 cells and
MDA-MB-231 cells were trypsinized and harvested in PBS, then a total volume of 0.1 ml
PBS containing A2780 cells (1x10%) or MDA-MB-231 cells (1.5x10%) were injected
subcutaneously into the flanks of the animals. The animal study protocol was reviewed and
approved by the Institutional Animal Care and Use Committee of the University of

Cancer Cell Author manuscript; available in PMC 2016 October 12.


http://cghub.ucsc.edu
http://www.partek.com/
http://www.partek.com/

1duosnuepy Joyiny 1duosnuen Joyiny 1duosnuen Joyiny

1duosnuen Joyiny

Yan etal. Page 10

Pennsylvania. Please see Supplemental Experimental Procedures for a discussion of detailed
procedures.

Statistical analysis

Statistical analysis was performed using SPSS and SAS software. All results were expressed
as mean + SD, and p<0.05 indicated significance. The survival curves were constructed
according to the Kaplan-Meier method and compared with the log-rank test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

IncRNA dysregulation was characterized in 5,037 tumor samples across 13 cancer
types.

IncRNAs are altered in cancers at transcriptional, genomic, and epigenetic levels.
The expression and dysregulation of IncRNAs are strikingly cancer-type specific.

This study provides a resource to systematically identify cancer driver IncCRNAs.
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SIGNIFICANCE

The discovery of long non-coding RNA (IncRNA) has dramatically changed our
understanding of the biology of diseases. Recent studies have identified IncRNAs with
tumor suppressive and oncogenic activities. We conducted comprehensive analyses on
IncRNA profiles at transcriptional, genomic, and epigenetic levels in 5,037 tumor
specimens across 13 cancer types from the Cancer Genome Atlas and in 935 cancer cell
lines from the Cancer Cell Line Encyclopedia. Our large-scale analyses revealed that
IncRNA alterations are highly tumor- and lineage-specific and are often associated with
somatic copy number alterations, promoter hypermethylation, and/or cancer-associated
SNPs. Here we provide a rich resource to the research community for further
investigating INcRNAs functions and identifying IncRNAs with diagnostic and
therapeutic potentials.
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Figure 1. The expression of INcRNAs is dysregulated in cancer
A. Heatmap of IncRNAs whose expression is significantly dysregulated. The top 100 most

significantly dysregulated IncRNAs from each individual tumor-type are presented. B. The
percentages of the dysregulated INcRNAs and PCGs. C. and D. The percentages of the up-
(C) and down- (D) regulated IncRNAs (left) and PCGs (right) that were shared among the
seven cancer types. E. and F. Venn diagrams of the up- (left) and down- (right) regulated
IncRNAs (E) and PCGs (F) shared among the seven cancer types. See also Figure S1 and
Tables S1 and S2.
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Figure 2. Somatic copy numbers of INcCRNA genes are altered in cancer with different
frequencies

A. A genome-wide view of SCNASs in cancers. The outer track shows the frequencies of
SCNAs from the IncRNA-containing loci and the inner track shows the focal alteration
regions. B. An enlarged view of SCNAs in LUSC. C. Heatmap of somatic copy humber gain
and loss for IncRNA genes. The rows, each of which represents an INcRNA gene locus, are
arranged according to the genomic locations of the INCRNA genes. Left: frequency of gain
(red); right: frequency of loss (blue). D. The IncRNA and PCGs in the top 20 focal gain
(left) or loss (right) peaks in LUSC. The numbers of PCGs (left), annotated INCRNAs
(middle), and detectable INcRNAs (right) in each peak are indicated in parentheses. E. and
F. Histogram of percentage of INCRNAs whose RNA-SCNA correlation coefficients are in
specific ranges across 13 cancer types (E) and in each cancer type (F). The number and red
color intensity in the inserts indicate the percentage of the detectable INcRNAs whose
Pearson’s R value was =0.2 in a given cancer type. See also Figure S2 and Tables S3.
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Figure 3. DNA methylation patterns in the promoter regions of INcRNA genes are altered in
cancer

A. NMF clustering of DNA methylation probes that are located in IncRNA promoters and
whose methylation -values had the largest variations across all breast specimens. B.
Heatmaps of the methylation status (B-value, upper) in the promoter regions and the RNA
expression level (lower) of the corresponding INCRNAS in breast specimens. C. Heatmaps of
the methylation status of the IncRNA promoter regions and the RNA expression levels. D. A
summary of the percentage of the CAESLG. See also Figure S3 and Tables S4 and S5.
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Figure 4. Many cancer-associated SNPs are located in IncRNA loci
A. A genome-wide view of the most significant cancer-associated index SNPs. The peaks in

each track are proportional to the p-values between the chromosomal locations of the index-
SNPs. B. Genome-wide view of the breast (upper) and prostate (lower) index-SNPs in
IncRNA (red) and PCG loci (green).
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Figure 5. The expression of IncRNAs is a specific biomarker in cancer
A. Unsupervised hierarchical cluster analyses on the expression of the top 10% IncRNAs

whose expression levels varied the most across all samples within each cancer type. B.
Heatmap generated by unsupervised cluster analysis of InNCRNAs with the largest expression
variation in kidney cancer. C. Heatmap of unsupervised hierarchical cluster analysis using
IncRNA signatures from breast cancer. D. Distribution of maximal subtype specificity
scores calculated for each gene across the breast cancer specimens for all expressing
transcripts (upper) or high expressers (lower) for IncRNA (blue), pseudogenes (red), and
PCGs (black). E. Heatmap of IncRNA (left) and PCG (right) expression (JC scores) sorted
on the basis of tissue-specific expression. Top: tissue-specific; bottom: ubiquitously
expressed. F. Heatmap of unsupervised hierarchical cluster analysis using IncRNA
signatures from the CCLE RNA-seq dataset. G. Distributions of maximal cancer-type
specificity scores calculated for each gene across the CCLE major cancer types and across
all expressing genes (upper) or high expressers (lower) for IncRNAs (blue), pseudogenes
(red) and PCGs (black). See also Figure S4 and Tables S6.
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Figure 6. An effective strategy to integrate multidisciplinary information from TCGA to identify
cancer driver IncRNAs

A. Flowchart describing the process of candidate gene selection in breast cancer. B. The
summary of the proof-of-concept siRNA screening in MDA-MB-231 cells. C. Copy number
profiles of BCAL8locus from breast tumor specimens. D. Survival curves of breast cancer
patients with high and low BCAL8RNA expression (left) and differing genomic SCNA
status (right). The numbers of patients who were alive (at risk), deceased (event), or
censored during the course of surveillance are indicated in the table under the corresponding
time points. E. The correlation between BCAL8gene copy number and RNA expression in
breast cancer. F. The growth curves of cells expressing control or BCAL8shRNAs. G. Soft-
agar assays (in 6-well plates) on cells expressing control or BCAL8shRNAs. H.
Quantification of the number of colonies from the softer agar assays. |. Xenograft tumor
growth of cells expressing control or BCAL8shRNAs. Error bars: SD. *: p<0.05. See also
Figure S5 and Tables S7.
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Figure 7. Inferring the functions of BCALS8 by integrative bioinformatics analyses
A. Heatmap of PCGs that were significantly and positively co-expressed with BCAL8 The

genes were arranged from top to bottom in ascending order of their correlation with BCALS8
B. Venn diagrams of BCAL8associated genes among breast, ovarian, and endometrial
cancers. C. Pathways over-represented by BCAL8associated PCGs in all three cancer types
according to DAVID analysis based on gene ontology term. D. Enrichment of cell cycle
pathway genes in cancer specimens with high levels of BCAL8 E. Heatmap of PCGs whose
protein expression (RPPA) is significantly correlated with BCAL8expression in breast
cancer. The proteins are arranged from top to bottom in ascending order of their correlation
with BCALB8expression. F. Cell-cycle profiles of cells expressing control and BCALS8
shRNAs. G. gRT-PCR of CCNE2 mRNA expression in cells expressing control or BCAL8
shRNAs. H. Western blot of Cylin E2 in cells expressing control or BCAL8shRNAs. Error
bars: SD. *: p<0.05. See also Figure S6 and Tables S8.
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